PYTHON DASTURLASH TILI


Гео и язык канала: Узбекистан, Узбекский
Категория: Технологии


Python dasturlash tilini o'rganmoqchimisiz ? Ammo bu dasturlash tili haqida kerakli ma'lumotlarni qayerdan topishni bilmayabsizmi ?
Telegram tarmog'idagi Python dasturlash tili haqida barcha ma'lumotlarni o'zida saqlovchi kanal: @Python_uzbek_coder

Связанные каналы  |  Похожие каналы

Гео и язык канала
Узбекистан, Узбекский
Категория
Технологии
Статистика
Фильтр публикаций


Репост из: Sardor Salimov | IT teacher
Barcha vatan himoyachilariga raxmat. Bayramigiz muborak bo'lsin.


Репост из: I am AYTIshnik 👨‍💻
Qaysi biri yaxshiroq?
Опрос
  •   Core i3 11Gen
  •   Core i5 10Gen
  •   Core i7 9Gen
121 голосов


Видео недоступно для предпросмотра
Смотреть в Telegram
Gapiruvchi kod)


Репост из: Cambridge IT Center Samarkand
Postni Dizayn guruhining yangi o'quvchilari tayyorladi.


Reja tayyor

1.Bot father + echo bot + start/stop
2. Commands+Message handling
3.Fayl
4.Register
5.State
6.Api bot
7.Server
8.Sql
9.2 ta bot
Shu 9 ta dars orqali kamida 300$ ga baholangan botlar qilishni o'rganasiz.
Sizdan talab qilinadigan asosiy narsa: PYTHON DASTURLASH TILINI BAZAVIY O'RGANIB TURINGLAR.

Start 10-dekabr.
Shu kanalda: @python_uzbek_coder
Guruh: @python_uzbek_coder_guruh


Tez orada: online, tekin telegram bot darslarini boshlimiz.
Ungacha esa siz python dasturlash tilini o'rganib turing.


Bir ishlatib ko'ringlarchi.

from pptx import Presentation
from pptx.util import Inches, Pt

# Create a presentation object
prs = Presentation()

# Define slides content
slides_content = [
{"title": "Introduction to Python", "content": "The Versatile Programming Language\nYour Name or Center’s Name"},
{"title": "What is Python?",
"content": "• Python is a high-level, interpreted programming language.\n• Known for its simplicity and readability.\n• Created by Guido van Rossum and first released in 1991."},
{"title": "Key Features of Python",
"content": "• Easy to read and write; syntax is beginner-friendly.\n• Open-source and free to use.\n• Supports multiple programming paradigms (object-oriented, procedural, functional).\n• Extensive standard library and strong community support."},
{"title": "Why Learn Python?",
"content": "• Widely used in web development, data science, AI, automation, and more.\n• High demand in the job market.\n• Large ecosystem with libraries for various tasks.\n• Beginner-friendly, with a fast learning curve."},
{"title": "Python Syntax Basics",
"content": "• Variables and Data Types (int, float, string, list, dictionary)\n• Basic Syntax Example:\nname = 'Python'\nprint('Hello, ' + name)\n• Indentation for defining blocks (no braces or semicolons needed)."},
{"title": "Popular Python Libraries",
"content": "• Data Science: NumPy, pandas, Matplotlib\n• Web Development: Django, Flask\n• Machine Learning & AI: TensorFlow, scikit-learn\n• Automation: Selenium, BeautifulSoup"},
{"title": "Python Applications",
"content": "• Web Development\n• Data Analysis and Visualization\n• Machine Learning and Artificial Intelligence\n• Game Development\n• Scripting and Automation"},
{"title": "Career Opportunities with Python",
"content": "• Python Developer\n• Data Scientist\n• Machine Learning Engineer\n• Web Developer\n• DevOps Engineer"},
{"title": "Resources to Learn Python",
"content": "• Python documentation: https://docs.python.org\n• Online platforms: Codecademy, Coursera, edX, Udacity\n• Books: 'Python Crash Course,' 'Automate the Boring Stuff with Python'"},
{"title": "Summary",
"content": "Why Python is a great language to learn.\nEncouragement to start coding and exploring Python."},
]

# Add slides
for slide_info in slides_content:
slide_layout = prs.slide_layouts[1] # Using the Title and Content layout
slide = prs.slides.add_slide(slide_layout)
title = slide.shapes.title
content = slide.placeholders[1]

# Set title and content for each slide
title.text = slide_info["title"]
content.text = slide_info["content"]

# Save the presentation
pptx_path = "Introduction_to_Python_Presentation.pptx"
prs.save(pptx_path)
print(f"Presentation saved as {pptx_path}")


Pythonda kod yozib ppt yasay olasizmi?

Qiziqmi?


Репост из: Cambridge IT Center Samarkand
Windows 10 tizimida sozlamalarga kirish uchun qaysi tugmalar bosiladi? В системе Windows 10, какие кнопки нужно нажать, чтобы войти в настройки?
Опрос
  •   Win+S
  •   Win+N
  •   Win+I
  •   Win+P
  •   Win+R
822 голосов


Python dasturlash tili asoschisi kim?
Опрос
  •   Jack Python
  •   Guido van Rossum
  •   Python Lounhes
  •   Pysun Thonic
1092 голосов


Репост из: Sardor Salimov | IT teacher
Kutib oling sun'iy intellekt Uzbek Plov nomli qo'shiq aytdi.

https://youtu.be/Jtv06BQ-CBg


Natija nima chiqishini kod yozmasdan taxmin qiling.


Видео недоступно для предпросмотра
Смотреть в Telegram




🔠🅰️🔠🅰️🔠🔠🔠
Bot PYTHON dasturlash tilida yaratilgan!
Ramazon oyida siz va yaqinlaringiz uchun foydali bot.

@PrayingTime_bot

Bot orqali siz namoz vaqtlaridan habar topishingiz mumkin.
Bundan tashqari bot sizga o'g'iz ochish va og'iz yopish vaqtlarini eslatib turadi.


Репост из: Algorithmic Solutions


Репост из: Cambridge IT Center Samarkand
IT tanlovlarda 1-o'rin uchun qancha pul mukofoti qo'yiladi?

Ulug'bek vorislari - 10 mln so'mdan ortiq.
Uz data challenge - 50.000$.
President Tech Award - 100.000$.
StartUP loyihalar tanlovi - 500 mln so'mgacha.

Bu tanlovlarda g'olib bo'lish uchun sizda IT loyiha va uning pratatipi bo'lishi kerak.

☎️ +998505004030
👨‍💻 @Algorithmic_Solutions
📍 Firdavsiy 1 (Infin bank)


Репост из: Algo Expert
Umumiy natija


Репост из: Algo Expert
Agar natija olib kursak
cls: tensor([0., 0., 0., 0., 0., 0., 0.])
conf: tensor([0.8909, 0.8682, 0.8674, 0.8622, 0.8439, 0.8392, 0.7159])
data: tensor([[1.6254e+02, 2.2389e+01, 2.5266e+02, 1.6701e+02, 8.9091e-01, 0.0000e+00],
[2.3503e+02, 3.1486e+01, 2.9971e+02, 1.6686e+02, 8.6820e-01, 0.0000e+00],
[2.1997e+01, 5.3749e+01, 7.4538e+01, 1.6752e+02, 8.6741e-01, 0.0000e+00],
[1.1284e+02, 3.2849e+01, 1.6784e+02, 1.6768e+02, 8.6221e-01, 0.0000e+00],
[6.3885e+01, 4.3812e+01, 1.1679e+02, 1.6726e+02, 8.4389e-01, 0.0000e+00],
[3.2759e-02, 5.2869e+00, 4.6813e+01, 1.6724e+02, 8.3916e-01, 0.0000e+00],
[1.5617e+02, 1.0563e+01, 1.9749e+02, 9.0878e+01, 7.1594e-01, 0.0000e+00]])
id: None
is_track: False
orig_shape: (168, 300)
shape: torch.Size([7, 6])
xywh: tensor([[207.5979, 94.6973, 90.1146, 144.6161],
[267.3671, 99.1744, 64.6808, 135.3771],
[ 48.2676, 110.6329, 52.5402, 113.7673],
[140.3382, 100.2657, 55.0010, 134.8336],
[ 90.3380, 105.5342, 52.9057, 123.4454],
[ 23.4231, 86.2625, 46.7806, 161.9512],
[176.8280, 50.7202, 41.3200, 80.3153]])
xywhn: tensor([[0.6920, 0.5637, 0.3004, 0.8608],
[0.8912, 0.5903, 0.2156, 0.8058],
[0.1609, 0.6585, 0.1751, 0.6772],
[0.4678, 0.5968, 0.1833, 0.8026],
[0.3011, 0.6282, 0.1764, 0.7348],
[0.0781, 0.5135, 0.1559, 0.9640],
[0.5894, 0.3019, 0.1377, 0.4781]])
xyxy: tensor([[1.6254e+02, 2.2389e+01, 2.5266e+02, 1.6701e+02],
[2.3503e+02, 3.1486e+01, 2.9971e+02, 1.6686e+02],
[2.1997e+01, 5.3749e+01, 7.4538e+01, 1.6752e+02],
[1.1284e+02, 3.2849e+01, 1.6784e+02, 1.6768e+02],
[6.3885e+01, 4.3812e+01, 1.1679e+02, 1.6726e+02],
[3.2759e-02, 5.2869e+00, 4.6813e+01, 1.6724e+02],
[1.5617e+02, 1.0563e+01, 1.9749e+02, 9.0878e+01]])
xyxyn: tensor([[5.4180e-01, 1.3327e-01, 8.4218e-01, 9.9408e-01],
[7.8342e-01, 1.8742e-01, 9.9902e-01, 9.9323e-01],
[7.3325e-02, 3.1994e-01, 2.4846e-01, 9.9712e-01],
[3.7613e-01, 1.9553e-01, 5.5946e-01, 9.9811e-01],
[2.1295e-01, 2.6078e-01, 3.8930e-01, 9.9558e-01],
[1.0920e-04, 3.1470e-02, 1.5604e-01, 9.9546e-01],
[5.2056e-01, 6.2872e-02, 6.5829e-01, 5.4094e-01]])
Shunga uxshagan natija beradi.
Natija siz ishlatayotgan freymworkga bogliq (Pytorch, ....)
Demak birinchi listda sinf (0-bu odam umumiy sinflar
names: {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
)
keyin esa conf yane har bitta obektni aniqlash aniqligi ruyxati (rasmda bir nechta obekt buladi)
keyin esa bizga obekt joylashuvi xywh yane yuqori chap burchag koordinatasi va w-uzunlik h-balandlik beriladi.
bundan tashqari biz turtburchak asosida malumotni olishimiz mumkin yuqori chao va pastgi ong xyxy


Репост из: Algo Expert
Rasm yoki freymdan malum predmet obekt ni joylashuvni olamiz.
Bu ham juda oson 5-6 qatorda bajariladi.
from ultralytics import YOLO

model = YOLO("yolov8s.pt")
ans = model.predict(source= ".../person.jpeg", show = True, imgsz = 320, conf = 0.7)
#yolov8s bir nechta turdagi obektlarni detection qila oladi
for obj in ans:
box = obj.boxes
print(box)

Показано 20 последних публикаций.