Suhrob Abdullayev


Channel's geo and language: Uzbekistan, English
Category: Telegram


Bir dasturchining fikrlari, va sohada ilm ulashishi uchun blog sifat kanal.
dm: @sukhrob_abdullayev
🎯 Fikrlog: @sukhrob_fikrlog
☕️buymeacoffee.com/sukhrobabdullaev

Related channels

Channel's geo and language
Uzbekistan, English
Category
Telegram
Statistics
Posts filter


Video is unavailable for watching
Show in Telegram


#kodj #networking #ai

25.01 kuni AI bo'yicha asosan Koreyadagi O'zbek dasturchilar hamjamyati tomonidan tashkil qilingan navbatdagi event bo'lib o'tdi.

AI bo'yicha mutaxassis akalarimiz speakerlik qilishdi, Bekhzod aka Olimov (5-6 yillik tajriba) va Jumabek aka Alikhan (10 yillik tajriba), haqiqatdan juda ajoyib insaytlar oldim, baraka topshsin, AI/ML ga bo'lgan qiziqishimni yanada oshirishdi va o'zaro suhbatlar juda ajoyib.

- PHD darajamni AI bo'yicha o'qish niyatim bor edi, ular bu yoo'llarda o'tkan ekan, ancha + bo'ldi.

P.s: Albatta Eventlardan, faqat va faqat foyda olamiz. #networking #experience #insight #sharing ....

- Linkedin sahifalariga kirib bemalol tanishib chiqib, tanishsangiz ham bo'ladi.

@sukhrob_abdullaev






dots graph


1. Histogram - Bell Curve
2. Normal Distribution
3.

Z Score


1. MAD - Mean Absolute Deviation

To calculate MAD:

Find the mean of the scores: (75 + 72 + 68 + 65 + 67 + 73) / 6 = 70
For each score, calculate the absolute difference from the mean:
Mohan: |75 - 70| = 5
Andrea: |72 - 70| = 2
Sofia: |68 - 70| = 2
Joe: |65 - 70| = 5
Virat: |67 - 70| = 3
Abdul: |73 - 70| = 3
Add up the absolute differences: 5 + 2 + 2 + 5 + 3 + 3 = 20
Divide the sum by the number of scores to get the MAD: 20 / 6 = 4.8

2. SD - Standard Deviation

Find the mean of the scores: 70
For each score, calculate the squared difference from the mean:
Mohan: (75 - 70)^2 = 25
Andrea: (72 - 70)^2 = 4
Sofia: (68 - 70)^2 = 4
Joe: (65 - 70)^2 = 25
Virat: (67 - 70)^2 = 9
Abdul: (73 - 70)^2 = 9
Add up the squared differences: 25 + 4 + 4 + 25 + 9 + 9 = 76
Divide the sum by the number of scores: 76 / 6 = 12.67
Take the square root to get the SD: sqrt(12.67) = 4.11

Misollar bilan farqi.


48.895 ta datadan outlierni olib tashadik va bizda qoldi. 48.017 ta data qoldi

Prenctile orqali outlierlarni olib tashadik Pandas orqali




jupyterdan foydalanyapmiz.


Using the Interquartile Range (IQR) Method.

Find an outlier.


- Mean, Median
- Handle missing value
- Exclude outlier
- Percentile

https://www.statisticshowto.com/probability-and-statistics/percentiles-rank-range/


Outlier haqida.




Bugun Python session 21-kun || Data Science

🕔 UZB vaqti: 17:00
⏰ KR vaqti: 21:00


▶️ Playlist: Python live session 31 DAYS
🖤 LIVE: qo'ng'roqchani bosib qo'yish uchun.

📊 Bugun Data Scienceni 1-qismini Mathematics va Statistikani yaxshiroq o'rganish bilan boshlaymiz

P.s: LIVE chatda savollar bo'lsa, shu vaqtda javob berib ketaman. Har doimgidek video yozib olinadi.

@sukhrob_abdullaev


Srazu 5️⃣ dan boshlab ketamiz, yuqoridagilar qo'shimcha sohaga kerak bo'lgani uchun yozgandim.


👩‍💻 DATA SCIENCE va AI/ML sohalariga ga tayyormisiz?

1️⃣PYTHON

- 👩‍💻 Automate the Boring Stuff: https://automatetheboringstuff.com
- Python docs: https://docs.python.org/3/tutorial

2️⃣ Version Control (Git) + GitHub

- 👩‍💻 GitHub: https://docs.github.com/en/get-started
- 👩‍💻 https://git-scm.com/book/en/v2

3️⃣Data Structures and Algorithms

- Alohida challengeda kutilmoqda
...

4️⃣ SQL

- 👩‍💻 SQL Bolt: https://sqlbolt.com
- Programiz: https://www.programiz.com/sql
- practice.

5️⃣ Mathematics & Statistics

- 📊Common topics for Data Science: https://youtube.com/playlist?list=PLeo1K3hjS3uuKaU2nBDwr6zrSOTzNCs0l&si=hs_wpWwchg9Sktjw
Optional to see 👀
- Linear Algebra: https://youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&si=ecQsxnjm6kjSHeX2
- Essence of Calculus: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

6️⃣ Data Collection & Visualization

- 📈 Data Visualization: https://www.kaggle.com/learn/data-visualization
- W3schools: https://www.w3schools.com/datascience
- SimpliLearn: https://youtu.be/MiiANxRHSv4

7️⃣Machine Learning Fundamentals

- Ikboljon aka AI scientist (Phd @ Oxford): https://youtube.com/playlist?list=PL49k1K6OklKAuDcOSz07g2OYPgH1JSfQ7&si=qJoWYo9wzX02uCOA
- Coursera by Andrew Ng: https://www.coursera.org/specializations/machine-learning-introduction
- 👩‍💻 Google ML course: https://developers.google.com/machine-learning/crash-course

8️⃣9️⃣ Others (will be updated/added)

- Hozircha mendagi resurslar va ketma-ketlikdagi rejalarim shu, albatta AI (Suniy Intellekt ) sohasi ancha katta, AI bo'yicha ma'lum soha tanlamadim hali, challenge davomida albatta bittasini tanlab, shu bo'yicha o'rganamiz.
Ketma-ketlik aniq tuzilgan deya olmaymanu, lekin albatta docs va videolardan ko'rib amaliy qilib ketaveramiz, va albatta ishonchim komilki, o'rganish davomida, miyada mohiyat paydo bo'ladi.


- Tog'ri 11 kunda to'liq o'rgana olmasmiz, lekin mohiyatni anglab,vaqtni vaqtga qo'yib va LIVE ni samarlari o'tkazish uchun haraka qilamiz, InshaAllah

P.s: Agar kimdadir qo'shimcha bo'lsa, ulashsangiz xursand bo'lamiz, va albatta YouTube da eslab o'tamiz.

@sukhrob_abdullaev


📊Shuni yanada qisqartirib 11 kun qilaylik 💪

Mayli Professional bo'lmasmiz, lekin boshlab olish uchun yaxshi challenge shunday emasmi?


📱 Reddit dan yaxshi savolga yaxshi javob.

Manba:

- Reja ham tayyor bo'lib qoldi, yaqinda hammasini tashayman.

@sukhrob_abdullaev


O’zbekistonda birga ishlagan akamiz Fayzulloh aka yaqinda kompaniyalarini ochgandila, bugunga kelib IT park rezidenti bo’libdila, Alloh xayirli qilsin 🤲

20 last posts shown.