This study identified and compared the upgrading impacts for the quantity, quality, and structural aspects of transport infrastructure on regional economic growth in China from 2007 to 2015, when the country was approaching the upper-middle income stage of development. This is the first study to consider government development strategies in a transport infrastructure impact evaluation framework for China. We constructed a unique dataset to describe the three aspects of the transport infrastructure, and in contrast to recent literature, we selected provinces as the geographic units to alleviate concerns about SUTVA violations [28]. To address concerns about reverse causality and account for lagged responses in economic growth to any exogenous shock including transport infrastructure, we adopted the system-GMM estimator for dynamic panel data and obtained consistent and unbiased parameter estimates [32,33,34,37,60]. We also compared our results with those in the existing literature, focusing on the differential impacts of various aspects of transport infrastructure on regional economic growth in China at different economic development levels. This approach yields new insights.
Our analysis led us to some general conclusions about the effects of transport infrastructure on growth. First, it appeared that transport infrastructure wasstill significantly contributing to economic growth in China, even as the country had entered the upper-middle income stage. Second, quality improvements in roadways and railways (measured by expressways and HSR development) and structural upgrading of the transport infrastructure (measured by the increasing share of government expenditure for transport) significantly contributed to growth at this development level. However, we didnot find a significant positive impact for overall quantity expansion of the land transport network. Third, government development strategies that defy local comparative advantages not only lead to a lower per capita GDP growth rate but also potentially restrict the contribution of transport infrastructure. Lastly, regional heterogeneity for Western China could differ across transport modes, particularly with respect to goods versus passenger transport and roadways versus railways.
This research enhances our understanding of transport infrastructure impacts on economic growth in China and can inform national transport infrastructure policy. The results are specific to China’s context but could be useful for policymakers in other emerging economies and developing countries that are experiencing comparable economic growth and infrastructure development patterns. Economic growth is central to China’s economic development mission, and our study suggests that public investments in national high-quality roadways and railways as well as government expenditure for transport maintenance to improve service efficiency can stimulate aggregate economic growth, as China reaches the upper-middle income stage. Compared with the earlier and most recent literature, we found that overall, different aspects of transport infrastructure had heterogeneous impacts on growth depending on the economic development level. Moreover, to ensure that transport infrastructure investment will guarantee growth, government development strategies that are favorable to the overall economic conditions are a vital policy prerequisite.
From a broader perspective, future studies could pay more attention to the function of transport infrastructure to achieve the Sustainable Development Goals adopted by all United Nations Member States in 2015. Moreover, new infrastructure, compared to traditional infrastructure such as roads, railways, and bridges, are built on advanced technology and digitization. Future research may also analyze how the current system of information and communications infrastructure can be used to develop the infrastructure under the paradigm of Industry 4.0