PYTHON DASTURLASH TILI


Kanal geosi va tili: O‘zbekiston, O‘zbekcha


Python dasturlash tilini o'rganmoqchimisiz ? Ammo bu dasturlash tili haqida kerakli ma'lumotlarni qayerdan topishni bilmayabsizmi ?
Telegram tarmog'idagi Python dasturlash tili haqida barcha ma'lumotlarni o'zida saqlovchi kanal: @Python_uzbek_coder

Связанные каналы  |  Похожие каналы

Kanal geosi va tili
O‘zbekiston, O‘zbekcha
Statistika
Postlar filtri


Sardor Salimov | IT teacher dan repost
Barcha vatan himoyachilariga raxmat. Bayramigiz muborak bo'lsin.


I am AYTIshnik 👨‍💻 dan repost
Qaysi biri yaxshiroq?
So‘rovnoma
  •   Core i3 11Gen
  •   Core i5 10Gen
  •   Core i7 9Gen
121 ta ovoz


Video oldindan ko‘rish uchun mavjud emas
Telegram'da ko‘rish
Gapiruvchi kod)


Cambridge IT Center Samarkand dan repost
Postni Dizayn guruhining yangi o'quvchilari tayyorladi.


Reja tayyor

1.Bot father + echo bot + start/stop
2. Commands+Message handling
3.Fayl
4.Register
5.State
6.Api bot
7.Server
8.Sql
9.2 ta bot
Shu 9 ta dars orqali kamida 300$ ga baholangan botlar qilishni o'rganasiz.
Sizdan talab qilinadigan asosiy narsa: PYTHON DASTURLASH TILINI BAZAVIY O'RGANIB TURINGLAR.

Start 10-dekabr.
Shu kanalda: @python_uzbek_coder
Guruh: @python_uzbek_coder_guruh


Tez orada: online, tekin telegram bot darslarini boshlimiz.
Ungacha esa siz python dasturlash tilini o'rganib turing.


Bir ishlatib ko'ringlarchi.

from pptx import Presentation
from pptx.util import Inches, Pt

# Create a presentation object
prs = Presentation()

# Define slides content
slides_content = [
{"title": "Introduction to Python", "content": "The Versatile Programming Language\nYour Name or Center’s Name"},
{"title": "What is Python?",
"content": "• Python is a high-level, interpreted programming language.\n• Known for its simplicity and readability.\n• Created by Guido van Rossum and first released in 1991."},
{"title": "Key Features of Python",
"content": "• Easy to read and write; syntax is beginner-friendly.\n• Open-source and free to use.\n• Supports multiple programming paradigms (object-oriented, procedural, functional).\n• Extensive standard library and strong community support."},
{"title": "Why Learn Python?",
"content": "• Widely used in web development, data science, AI, automation, and more.\n• High demand in the job market.\n• Large ecosystem with libraries for various tasks.\n• Beginner-friendly, with a fast learning curve."},
{"title": "Python Syntax Basics",
"content": "• Variables and Data Types (int, float, string, list, dictionary)\n• Basic Syntax Example:\nname = 'Python'\nprint('Hello, ' + name)\n• Indentation for defining blocks (no braces or semicolons needed)."},
{"title": "Popular Python Libraries",
"content": "• Data Science: NumPy, pandas, Matplotlib\n• Web Development: Django, Flask\n• Machine Learning & AI: TensorFlow, scikit-learn\n• Automation: Selenium, BeautifulSoup"},
{"title": "Python Applications",
"content": "• Web Development\n• Data Analysis and Visualization\n• Machine Learning and Artificial Intelligence\n• Game Development\n• Scripting and Automation"},
{"title": "Career Opportunities with Python",
"content": "• Python Developer\n• Data Scientist\n• Machine Learning Engineer\n• Web Developer\n• DevOps Engineer"},
{"title": "Resources to Learn Python",
"content": "• Python documentation: https://docs.python.org\n• Online platforms: Codecademy, Coursera, edX, Udacity\n• Books: 'Python Crash Course,' 'Automate the Boring Stuff with Python'"},
{"title": "Summary",
"content": "Why Python is a great language to learn.\nEncouragement to start coding and exploring Python."},
]

# Add slides
for slide_info in slides_content:
slide_layout = prs.slide_layouts[1] # Using the Title and Content layout
slide = prs.slides.add_slide(slide_layout)
title = slide.shapes.title
content = slide.placeholders[1]

# Set title and content for each slide
title.text = slide_info["title"]
content.text = slide_info["content"]

# Save the presentation
pptx_path = "Introduction_to_Python_Presentation.pptx"
prs.save(pptx_path)
print(f"Presentation saved as {pptx_path}")


Pythonda kod yozib ppt yasay olasizmi?

Qiziqmi?


Cambridge IT Center Samarkand dan repost
Windows 10 tizimida sozlamalarga kirish uchun qaysi tugmalar bosiladi? В системе Windows 10, какие кнопки нужно нажать, чтобы войти в настройки?
So‘rovnoma
  •   Win+S
  •   Win+N
  •   Win+I
  •   Win+P
  •   Win+R
822 ta ovoz


Python dasturlash tili asoschisi kim?
So‘rovnoma
  •   Jack Python
  •   Guido van Rossum
  •   Python Lounhes
  •   Pysun Thonic
1092 ta ovoz


Sardor Salimov | IT teacher dan repost
Kutib oling sun'iy intellekt Uzbek Plov nomli qo'shiq aytdi.

https://youtu.be/Jtv06BQ-CBg


Natija nima chiqishini kod yozmasdan taxmin qiling.


Video oldindan ko‘rish uchun mavjud emas
Telegram'da ko‘rish




🔠🅰️🔠🅰️🔠🔠🔠
Bot PYTHON dasturlash tilida yaratilgan!
Ramazon oyida siz va yaqinlaringiz uchun foydali bot.

@PrayingTime_bot

Bot orqali siz namoz vaqtlaridan habar topishingiz mumkin.
Bundan tashqari bot sizga o'g'iz ochish va og'iz yopish vaqtlarini eslatib turadi.




Cambridge IT Center Samarkand dan repost
IT tanlovlarda 1-o'rin uchun qancha pul mukofoti qo'yiladi?

Ulug'bek vorislari - 10 mln so'mdan ortiq.
Uz data challenge - 50.000$.
President Tech Award - 100.000$.
StartUP loyihalar tanlovi - 500 mln so'mgacha.

Bu tanlovlarda g'olib bo'lish uchun sizda IT loyiha va uning pratatipi bo'lishi kerak.

☎️ +998505004030
👨‍💻 @Algorithmic_Solutions
📍 Firdavsiy 1 (Infin bank)


Algo Expert dan repost
Umumiy natija


Algo Expert dan repost
Agar natija olib kursak
cls: tensor([0., 0., 0., 0., 0., 0., 0.])
conf: tensor([0.8909, 0.8682, 0.8674, 0.8622, 0.8439, 0.8392, 0.7159])
data: tensor([[1.6254e+02, 2.2389e+01, 2.5266e+02, 1.6701e+02, 8.9091e-01, 0.0000e+00],
[2.3503e+02, 3.1486e+01, 2.9971e+02, 1.6686e+02, 8.6820e-01, 0.0000e+00],
[2.1997e+01, 5.3749e+01, 7.4538e+01, 1.6752e+02, 8.6741e-01, 0.0000e+00],
[1.1284e+02, 3.2849e+01, 1.6784e+02, 1.6768e+02, 8.6221e-01, 0.0000e+00],
[6.3885e+01, 4.3812e+01, 1.1679e+02, 1.6726e+02, 8.4389e-01, 0.0000e+00],
[3.2759e-02, 5.2869e+00, 4.6813e+01, 1.6724e+02, 8.3916e-01, 0.0000e+00],
[1.5617e+02, 1.0563e+01, 1.9749e+02, 9.0878e+01, 7.1594e-01, 0.0000e+00]])
id: None
is_track: False
orig_shape: (168, 300)
shape: torch.Size([7, 6])
xywh: tensor([[207.5979, 94.6973, 90.1146, 144.6161],
[267.3671, 99.1744, 64.6808, 135.3771],
[ 48.2676, 110.6329, 52.5402, 113.7673],
[140.3382, 100.2657, 55.0010, 134.8336],
[ 90.3380, 105.5342, 52.9057, 123.4454],
[ 23.4231, 86.2625, 46.7806, 161.9512],
[176.8280, 50.7202, 41.3200, 80.3153]])
xywhn: tensor([[0.6920, 0.5637, 0.3004, 0.8608],
[0.8912, 0.5903, 0.2156, 0.8058],
[0.1609, 0.6585, 0.1751, 0.6772],
[0.4678, 0.5968, 0.1833, 0.8026],
[0.3011, 0.6282, 0.1764, 0.7348],
[0.0781, 0.5135, 0.1559, 0.9640],
[0.5894, 0.3019, 0.1377, 0.4781]])
xyxy: tensor([[1.6254e+02, 2.2389e+01, 2.5266e+02, 1.6701e+02],
[2.3503e+02, 3.1486e+01, 2.9971e+02, 1.6686e+02],
[2.1997e+01, 5.3749e+01, 7.4538e+01, 1.6752e+02],
[1.1284e+02, 3.2849e+01, 1.6784e+02, 1.6768e+02],
[6.3885e+01, 4.3812e+01, 1.1679e+02, 1.6726e+02],
[3.2759e-02, 5.2869e+00, 4.6813e+01, 1.6724e+02],
[1.5617e+02, 1.0563e+01, 1.9749e+02, 9.0878e+01]])
xyxyn: tensor([[5.4180e-01, 1.3327e-01, 8.4218e-01, 9.9408e-01],
[7.8342e-01, 1.8742e-01, 9.9902e-01, 9.9323e-01],
[7.3325e-02, 3.1994e-01, 2.4846e-01, 9.9712e-01],
[3.7613e-01, 1.9553e-01, 5.5946e-01, 9.9811e-01],
[2.1295e-01, 2.6078e-01, 3.8930e-01, 9.9558e-01],
[1.0920e-04, 3.1470e-02, 1.5604e-01, 9.9546e-01],
[5.2056e-01, 6.2872e-02, 6.5829e-01, 5.4094e-01]])
Shunga uxshagan natija beradi.
Natija siz ishlatayotgan freymworkga bogliq (Pytorch, ....)
Demak birinchi listda sinf (0-bu odam umumiy sinflar
names: {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
)
keyin esa conf yane har bitta obektni aniqlash aniqligi ruyxati (rasmda bir nechta obekt buladi)
keyin esa bizga obekt joylashuvi xywh yane yuqori chap burchag koordinatasi va w-uzunlik h-balandlik beriladi.
bundan tashqari biz turtburchak asosida malumotni olishimiz mumkin yuqori chao va pastgi ong xyxy


Algo Expert dan repost
Rasm yoki freymdan malum predmet obekt ni joylashuvni olamiz.
Bu ham juda oson 5-6 qatorda bajariladi.
from ultralytics import YOLO

model = YOLO("yolov8s.pt")
ans = model.predict(source= ".../person.jpeg", show = True, imgsz = 320, conf = 0.7)
#yolov8s bir nechta turdagi obektlarni detection qila oladi
for obj in ans:
box = obj.boxes
print(box)

20 ta oxirgi post ko‘rsatilgan.